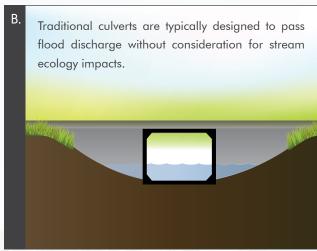

- Stream Ecology
- •Stream Biology



INVERT. ECOLOGY. BIOLOGY.

I-SERIES INVERT TECHNOLOGY

Integration of **i-Series**TM invert technology promotes sedimentation of natural streambed material. This creates a natural bottom – open to hyporheic zone below. The engineered bottom enhances the stream biology and ecology as well as provides areas of low velocity to allow for fish passage through the culvert.

TRADITIONAL CULVERT

Evidence suggests that traditional four-sided box culverts (and other traditional culverts) disrupt ecosystem connectivity by a variety of failure mechanisms, such as creating a velocity barrier, outlet perching, and many others. In North America alone, hundreds of thousands of culverts have been installed in fish-bearing streams and threaten river connectivity by creating barriers between fish populations and critical habitat (Park 2008, Poplar-Jeffers 2009). Ecological effects of creating artificial stream barriers are well documented, and include: habitat and population fragmentation, reduced genetic diversity, negative water quality, substrate alterations, and decreasing or destruction of fisheries populations (Poplar-Jeffers 2009, Price 2010, Anderson 2012).

Contech Engineered Solutions consulted with Colorado State University on the evaluation of Contech's ecological invert technology. The resulting design is an ecological bottom, wherein the culvert bottom will be made up of intermittent slats which allows it to be open to the streambed. These slats and alternating concrete roughness elements (sedimentation members) encourage sedimentation that result in a natural streambed material being deposited and retained in the culvert. Inducing a natural bed through the culvert provides significant environmental and ecological benefits along with inducing fish passage.

Poplar, Montana

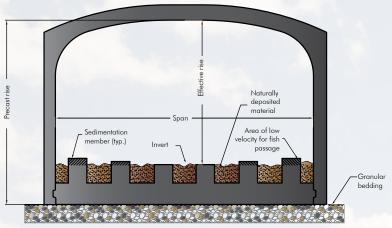
Cedar Rapids, Iowa

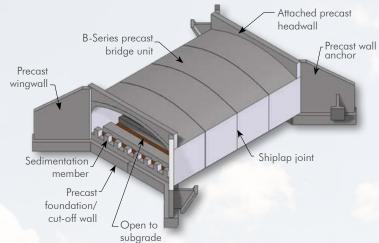
Lewis County, Washington

INDUSTRY RESEARCH & COMPREHENSIVE TESTING

The Washington State Department of Fish and Wildlife (WDFW) published a stream-crossing guideline which enumerates nine expected outcomes of a successful stream-simulation culvert design. Hyporheic connectivity differentiates the ecological bottom culvert from traditional culvert options. Of these ten outcomes, nine are expected to be fulfilled by the ecological invert technology, as supported by the results of the testing program (available upon request). The tenth outcome, bed gradation continuity, can be achieved by manual filling of the culvert at installation with natural bed sediments.

Successful Culvert Design Outcomes	A. i-Series™ Culvert	B. Traditional Culvert w/ Invert (may include buried invert)
Sizing	•	•
Flood Conveyance	•	
Fish Passage	•	
Profile Continuity	•	
Hydraulic Diversity	•	
Sediment Transport Continuity	•	
Low Flow Continuity	•	
Margin Habitat	•	
Debris Transport	•	
Connectivity to Subgrade (hyporheic zone)	•	•
Bed Gradation Continuity		


- This performance summary is based on extensive testing from Colorado State University.
- See bed gradation definition to right.


SUCCESSFUL CULVERT DESIGN OUTCOMES

- Flood conveyance is the ability for the culvert to pass the required design flood.
- Fish passage is the ability for fish to have appropriate resting areas to allow migration through the culvert
- Profile continuity is the preservation of the reachwise stream slope through the culvert. Maintaining slope is achieved by maintaining a natural bed through the culvert which reflects changes in the upstream and downstream reaches, and preventing outlet perching and degradation of the bed inside the culvert.
- Hydraulic diversity is the presence of zones of low, zero, or negative (upstream) flow velocities within the culvert along with regions of higher velocities. These zones provide resting habitat for aquatic organisms inside the culvert.
- Sediment transport continuity means that bed material transported through the upstream reach is continuously supplied to the culvert bed and supplied by the culvert to the downstream reach at an equivalent rate, allowing the culvert to reflect the bed structure of the stream reach.
- Low flow continuity is the maintenance of a channel for fish passage during low-flow events.
- Margin habitat is the existence of areas of low velocity and turbulence along and near the banks of a stream where fish, especially juveniles, can use for migration. In the ecological bottom culvert, it is a consequence of developing a low-flow channel in the culvert.
- Debris transport is the ability for the culvert to pass large woody debris or miscellaneous detritus.
- The hyporheic zone is the region beneath and alongside the streambed where there is interaction between the groundwater and the surface water. The hyporheic zone provides ideal habitat for microbes and invertebrates which are critical to the overall health of the stream.
- Bed gradation continuity is the maintenance of a bed material grain size distribution through the culvert which is equivalent to the grain size distribution of bed material upstream and downstream of the culvert. This criteria can be addressed by manual filling of the culvert at installation with natural bed sediments.

-SERIES... CON/SPAN® CULVERT – SIZE RANGES

MODEL	SPAN (ft)	EFFECTIVE RISE (ft)	WATERWAY AREA (sf)		
i1203	12.00	3.00	30.00		
i1204	12.00	4.00	42.00		
i1205	12.00	5.00	54.00		
i1206	12.00	6.00	66.00		
i1207	12.00	7.00	78.00		
i1208	12.00	8.00	90.00		
i1209	12.00	9.00	102.00		
i1210*	12.00	10.00	114.00		
i1403	14.00	3.00	36.00		
i1404	14.00	4.00	50.00		
i1405	14.00	5.00	64.00		
i1406	14.00	6.00	78.00		
i1407	14.00	7.00	92.00		
i1408	14.00	8.00	106.00		
i1409	14.00	9.00	120.00		
i1410*	14.00	10.00	134.00		
i1603	16.00	3.00	39.00		
i1604	16.00	4.00	55.00		
i1605	16.00	5.00	71.00		
i1606	16.00	6.00	87.00		
i1607	16.00	7.00	103.00		
i1608	16.00	8.00	119.00		
i1609	16.00	9.00	135.00		
i1610*	16.00	10.00	151.00		
* Structure rise	* Structure rise may vary depending on loading conditions.				

MODEL	SPAN (ft)	EFFECTIVE RISE (ft)	WATERWAY AREA (sf)
i1803	18.00	3.00	42.00
i1804	18.00	4.00	60.00
i1805	18.00	5.00	78.00
i1806	18.00	6.00	96.00
i1807	18.00	7.00	114.00
i1808	18.00	8.00	132.00
i1809	18.00	9.00	150.00
i1810*	18.00	10.00	168.00
i2004	20.00	4.00	65.00
i2005	20.00	5.00	85.00
i2006	20.00	6.00	105.00
i2007	20.00	7.00	125.00
i2008	20.00	8.00	145.00
i2009	20.00	9.00	165.00
i2010*	20.00	10.00	185.00
i2204	22.00	4.00	68.00
i2205	22.00	5.00	90.00
i2206	22.00	6.00	112.00
i2207	22.00	7.00	134.00
i2208	22.00	8.00	156.00
i2209	22.00	9.00	178.00
i2210*	22.00	10.00	200.00
i2404	24.00	4.00	71.00
i2405	24.00	5.00	95.00
i2406	24.00	6.00	119.00
i2407	24.00	7.00	143.00
i2408	24.00	8.00	167.00
i2409	24.00	9.00	191.00
i2410*	24.00	10.00	215.00

CINTECH ENGINEERED SOLUTIONS

© 2018 CONTECH ENGINEERED SOLUTIONS LLC, A QUIKRETE COMPANY ALL RIGHTS RESERVED. PRINTED IN USA.

Visit us at www.ContechES.com or call Toll Free: 800-338-1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DEGISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION: CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILTY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.